
Optimization Methods and Software
Vol. 00, No. 00, January 2009, 1–11

RESEARCH ARTICLE

Randomized Heuristics for Exploiting Jacobian Scarcity

Andrew Lyonsab∗ , Ilya Safrob and Jean Utkeab

aComputation Institute, The University of Chicago;
bMathematics and Computer Science Division, Argonne National Laboratory

(v4.4 released October 2008)

We describe a code transformation technique that, given code for a vector function F , pro-
duces code suitable for computing collections of Jacobian-vector products F ′(x)ẋ or Jacobian-
transpose-vector products F ′(x)T ȳ. Exploitation of scarcity - a measure of the degrees of
freedom in the Jacobian matrix - means solving a combinatorial optimization problem that
is believed to be hard. Our heuristics transform the computational graph for F , producing,
in the form of a transformed graph G′, a representation of the Jacobian F ′(x) that is both
concise and suitable for evaluating large collections of Jacobian-vector products or Jacobian-
transpose-vector products. Our heuristics are randomized and compare favorably in all cases
with the best known heuristics.

Keywords: automatic differentiation; scarcity; preaccumulation; edge elimination

AMS Subject Classification: 90C59; 68W20; 05C81; 68N20

1. Introduction

The computation of Jacobian-vector products is a fundamental step in the con-
text of science and engineering applications. Without loss of generality, suppose
a vector function F : Rn → R

m is given as a straight-line evaluation procedure;
real-life application codes often comprise such straight-line procedures. Thus, F
may not represent the entire function of interest but rather a small part that is
executed many times. We are interested in algorithmically applying the chain rule,
a technique known as automatic differentiation (AD), in order to obtain a new
program that evaluates y = F (x) along with some derivative information for F.
Suppose, in particular, that we are interested in computing either a collection of p
Jacobian-vector products

(
F ′(x)ẋi

)

i=1,...,p
or a collection of p Jacobian-transpose-

vector products
(
F ′(x)T ȳi

)

i=1,...,p
, where p is assumed to be sufficiently large. In

this context, the vectors ẋi are directions in the domain and the vectors ȳi may be
interpreted as weights. Because of symmetry, we can restrict our attention to the
former without loss of generality. Our goal, therefore, will be to approximate the
most efficient program for computing collections of Jacobian-vector products. The
notion of Jacobian scarcity [1–3] generalizes the properties of sparsity and rank to
capture a deficiency in the degrees of freedom of the Jacobian matrix. We describe
new randomized heuristics that exploit scarcity for the optimized evaluation of
collections of Jacobian-vector or Jacobian-transpose-vector products.

∗Corresponding author. Email: lyonsam@gmail.com

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 2009 Taylor & Francis
DOI: 10.1080/1055678xxxxxxxxxxxxx
http://www.informaworld.com

mailto:lyonsam@gmail.com

In the remainder of this section, we introduce the necessary definitions and con-
cepts. Section 2 contains a description of our heuristics and their implementation.
The results of our computatioal experiments are discussed in Section 3. In Section 4
we offer some conclusions and suggest possible directions for future work.

1.1. Propagating derivatives

We consider an implementation of F to consist of a sequence of assignments to
program variables of the form

vj = φ(vi)i≺j ,

where the relation i ≺ j indicates a direct dependence of variable vj on variable vi
and induces a directed acyclic graph (DAG) G called the computational graph of
F . Furthermore, it is assumed that each function φ is differentiable with respect to
each of its arguments so that we may linearize F (and thus G) by adding code that
evaluates the local partial derivatives cji ≡ ∂vj/∂vi. This process is implemented
as a fully mechanical procedure in such a way that the local partial derivatives
are evaluated at a fixed cost that is typically a small constant. These concepts are
illustrated by example in Figure 1.

v1 = x1; v2 = x2;
v3 = v1 + v2;
v4 = sin(v3);
v5 = v1 ∗ v4;
v6 = exp(v4);
y1 = v5; y2 = v6
︸ ︷︷ ︸

Original code
(fixed cost)

c31 = 1;
c32 = 1;
c43 = cos(v3);
c51 = v4;
c54 = v1;
c64 = v6;
︸ ︷︷ ︸

Linearization
(fixed cost)

v̇3 = 1∗v̇1 + 1∗v̇2

v̇4 = c43∗v̇3

v̇5 = c51∗v̇1 + c54∗v̇4

v̇6 = c64∗v̇4
︸ ︷︷ ︸

Propagation
(cost = 4p)

1

2

5

6

3

+
4

sin

∗

exp

Computational graph

1

2

5

6

3 4
1

1

c51

c43
c54

c64

Linearized computational graph

Figure 1. Suppose we are given a straight-line program (top left) that evaluates the vector function

F : x 7→ y defined as y1 = x1 sin(x1 + x2), y2 = esin(x1+x2). The process of linearization, fundamental to
AD, automatically produces code for evaluating the local partial derivatives cji at a small fixed cost.

We henceforth assume that the linearized computational graph G is given, where
every edge (i, j) is associated with either a unique variable representing the local
partial derivative cji or a value in {1,−1}. Traditional AD [3] prescribes the forward
mode for evaluating Jacobian-vector products, whereby derivative values v̇j are
propagated through G from the sources to the sinks by traversing the vertices in
topological order. When a vertex j is visited, we compute

v̇j =
∑

i≺j

cji ∗ v̇i .

F ′(x)Ẋ can be evaluated either by propagating p directions ẋ1, . . . , ẋp separately
(scalar mode), or by propagating Ẋ ∈ R

n×p in a single pass (vector mode).

draft version hg:f62d8dbf55e5+:196+
2

compiled September 15, 2010

In terms of scalar multiplications, the total computational cost associated with
each edge (i, j) is p if cji /∈ {1,−1} and 0 otherwise; this highlights the special
significance of unit edges. Thus, in both scalar and vector modes, the cost of
evaluating p Jacobian-vector products is p|E+(G)| scalar multiplications, where
E+(G) ≡ {(i, j) ∈ E | cji /∈ {1,−1}} denotes the set of nonunit edges in G.

1.2. Graph transformations and preaccumulation

The essential property of G is that the entries of the Jacobian F ′(x) can be ex-
pressed as Baur’s formula

∂yj
∂xi

=
∑

P∈[xi yj]

∏

(k,ℓ)∈P

cℓk ,

where [xi yj] denotes the set of all paths from xi to yj in G. A sequence ρ of local
graph transformations called edge eliminations allow us to transform G into the
remainder graph G′(ρ), which retains this property. Note that we do not consider
other known types of transformations (normalizations, reroutings, etc. [7]) because
of the caveats associated with them, see also Section 4.1.

−−−→
(3, 4)

[
c53 = c43 ∗ c54
c63 = c43 ∗ c64

︸ ︷︷ ︸

Preaccumulation
(negligible cost)

1

2

5

6

3
1

c51

1

c51
c53

c63

Remainder graph G′(ρ)

v̇3 = v̇1 + v̇2

v̇5= c51∗v̇1 + c53∗v̇3

v̇6= c63∗v̇3
︸ ︷︷ ︸

Propagation
(cost = 3p)

Figure 2. Result of applying the (partial) edge elimination sequence ρ =
(−−−→
(3, 4)

)

to the example shown

in Figure 1. The cost of the preaccumulation is assumed to be negligible, as it is independent of p.

Front elimination of an edge (i, j), denoted
−−→
(i, j), entails updating cℓi+= cji ∗cℓj

for all successors ℓ of j. Similarly, back elimination of an edge (i, j), denoted
←−−
(i, j),

entails updating cjk+ = cik ∗ cji for all predecessors k of i. If the elimination of
an edge leaves an intermediate vertex with either no inedges or no outedges, then
the vertex and all incident edges are removed from the graph. An edge elimination
sequence ρ is full if G′(ρ) contains no intermediate vertices. A full edge elimination
sequence corresponds to fully accumulating F ′(x) as a matrix. Any edge elimination
sequence that is not full is called partial.
For functions with scarce Jacobians, judicious choice of an edge elimination se-

quence can yield a remainder graph that has significantly fewer nonunit edges than
G. Proof of this concept is given in Figure 2. Propagation can then be performed at
a cost of p|E+(G′(ρ))| < p|E+(G)| scalar multiplications. We distinguish between
the propagation phase and the preaccumulation phase, which consists solely of edge
eliminations and has a cost independent of p. When p is sufficiently large, the cost
of the propagation phase dominates the computation. With this as our motivation,
we focus on finding a sequence ρ of edge eliminations such that |E+(G′(ρ))| is
minimized.

2. Randomized heuristics

A simple variant of the greedy heuristics described in [7] (hereafter called Hg) ex-
ploits scarcity by greedily choosing the best possible edge elimination at each step,

draft version hg:f62d8dbf55e5+:196+
3

compiled September 15, 2010

while maintaining a record of the best nontrivial edgecount that has been obtained.
Here, we describe our experiments with two basic types of randomized local search
methods, Metropolis [8] and simulated annealing (SA) [5]. Randomized local search
methods are especially useful for hard combinatorial optimization problems about
which little is known; successful use cases include problems such as TSP [13] VLSI
design [15] and vertex elimination in AD [11, 12]. Our new randomized heuristics
are compared with Hg when applied to the same set of examples, which include
both sample codes derived from real-world applications and artificially genearted
DAGs. Among the heuristics we tested, a hybrid version of Metropolis produced
the best results.

2.1. The edge elimination metagraph

Consider a directed, Markov chain-based dynamic metagraph G = (V,E) of all
possible states G attains as it undergoes sequences of edge eliminations and their
backtrackings along with a random walk process on G. Each node i ∈ V corre-
sponds to some state of G after a sequence of edge eliminations. The set E of
directed edges is partitioned into sets Es and Ed for static and dynamic directed
edges, respectively. A static directed edge ij ∈ Es corresponds to the legal edge
elimination that produces state j from i. A dynamic directed edge ij ∈ Ed repre-
sents a backward step (or backtracking) that is not an edge elimination. At any
moment Ed will contain only one edge. In other words, if at the kth step of a
random walk, elimination ij was accepted, then at the (k + 1)th step ji ∈ Ed will
appear but the previous backward edge will be removed. Note that, theoretically,
at any state j many backward edges could be created since j can be reachable
from more than one state. However, introduction of all backward edges can sig-
nificantly increase the complexity of traversing the metagraph, creating significant
implementation difficulties. Thus, at any state (except the initial one) there will
be only one backward edge. We denote by bi the predecessor of i in the random
walk over G.
Let Gi denote the DAG corresponding to state i, c(i) denote |E+(Gi)|, and

Ni = N+
i ∪N−i ∪N0

i denote the set of neighbors of i in G, where

N+
i = {j ∈ V | ij ∈ E and c(j) > c(i)} ;

N−i = {j ∈ V | ij ∈ E and c(j) < c(i)} ;

N0
i = {j ∈ V | ij ∈ E and c(j) = c(i)} .

2.2. The heuristics

We describe the classical version of Metropolis heuristic HM in Algorithm 1; we
began our computational experiments with this heuristic.
The difference between classical Metropolis and SA lies in the choice of a tem-

perature factor T . Instead of choosing a fixed T , a graduate cooling scheme for T
is employed in SA. Carefully chosen (fixed and varying) schemes for T is a central
issue of these algorithms. We refer the reader to [5] for a comprehensive background
on these methods and to [11, 12] for example of using SA in automatic differentia-
tion elimination problems. As discussed in [4], a Metropolis algorithm with the best
temperature can outperform SA. The third heuristic Hh that we used, described
in Algorithm 2, is a hybrid of Metropolis and a regular random walk.

draft version hg:f62d8dbf55e5+:196+
4

compiled September 15, 2010

Algorithm 1: Classical Metropolis algorithm (HM)

input: initial graph G0

i← 01

for k = 1, 2, . . . do2

while c(i) is sufficiently large do3

choose a random edge elimination ij4

if c(j) ≤ c(i) then5

accept ij6

else7

accept ij with probability e−(c(j)−c(i))/T for fixed T8

if ij is accepted then9

i← j10

Algorithm 2: Hybrid algorithm (Hh)

input: initial graph G0, maximum number of steps K
i← 01

for k = 1, 2, . . . ,K do2

if k is sufficiently large then3

i← 04

list all possible eliminations ij5

if |N−i \ bi| > 0 then6

accept j ∈ N+
i with normalized probability pij ∝ e−(c(j)−c(i))/T7

else8

accept j ∈ N+
i ∪N0

i ∪ {bi} with normalized probability9

pij ∝ e(−(c(j)−c(i))+1)/T

if ij is accepted then10

i← j11

3. Computational results

In this section, we describe numerical results obtained using Algorithm 2, which
has been implemented as part of OpenAD [14]. We designed our numerical ex-
periments with three types of computational graphs: (a) examples derived from
applications; (b) a set of artificially generated single-expression-use (SEU) graphs
[9]; and (c) random DAGs. We began with a series of aggressive random walks
over G on SEU graph instances and randomly generated instances. After suffi-
ciently many steps, the random walk is restarted, while keeping track of the best
result achieved so far. Surprisingly, this trivial algorithm resulted in an improve-
ment of 5-10% over Hg; This provided the first indication that randomized local
search can improve on Hg. In the real-life examples, however, this strategy was not
able to beat Hg. The next stage of experiments consisted of designing the classical
versions of Metropolis and SA. Independent of the aggressiveness of the gradual
cooling scheme for T , both methods provided an improvement of up to 20% on
the real-life instances and 10-15% on the artificial instances. The distribution of
the results was proportional to the Gaussian which concentrated the most likely
improvement on 12% over Hg on real-life instances. This series of experiments gave
us an important observation regarding the steps that improve the current state i:
if there exist two eliminations ij and ik such that ij, jk ∈ N−i and c(j) and c(k)

draft version hg:f62d8dbf55e5+:196+
5

compiled September 15, 2010

are almost equal, the better of the two should not necessarily be accepted. This ob-
servation guided the design of Hh which is the most successful of the heuristics.
Note this issue cannot be addressed by any classical gradual cooling scheme, as
such schemes work only on the elements of N+

i . Thus, no significant difference was
observed between Metropolis and SA when different schemes were employed.
Our best computational results were obtained using Algorithm 2 (Hh). The ob-

served improvement on the real-life graphs was up to 35%. Examples of two ex-
perimental series for real-life graphs are presented in Figure 3. For every graph we
ran 800 experiments. The results of Hg are 185 and 186 for the first and second
graphs, respectively. The most interesting example can be observed in Figure 3(a),
in which one can see that Hh almost separates two clusters of the solution quality.
The maximum number of steps (K) (see Algorithm 2) was 20|V | with 5 restarts
(line 3) when k was reaching 4|V |.

 130

 140

 150

 160

 170

 180

 190

 0 100 200 300 400 500 600 700 800

N
u
m

b
er

 o
f

n
o
n
u
n
it

 e
d
g
es

Experiments

 150

 155

 160

 165

 170

 0 100 200 300 400 500 600 700 800

N
u
m

b
er

 o
f

n
o
n
u
n
it

 e
d
g
es

Experiments

(a) (b)

Figure 3. Results for Hh on two real-life instances: (a) example derived from a code for fluid dynamics;
and (b) example from a complicated finite elements code.

3.1. Interpretation of the results

As with other randomized heuristics, one is curious whether some structure in the
problem is essential for the improvement in the cost function. If such a structure
could be found and characterized so that it may be recognized with relatively
low computational complexity, then the heuristic could be modified to specifically
search for and exploit such structure, in turn improving the chances of the thus
modified randomized heuristic to find a good solution. The results of our computa-
tional experiments indicate that (1) there can be a substantial improvement over
Hg and (2) there can be a separation of the cost function values. We followed two
paths to analyze the heuristic results.
One approach is to look at the energy difference δt of the tth step of Hh relative

to the step Hg would have taken. In other words, if i is the current state at the tth
step, ij is a transition accepted by Hh and ij∗ is a transition that should minimize
c(k) over all possible transitions ik,

δt = c(j) − c(j∗) .

There are 2 cases:

(1) If there are targets with an improvement to the cost function, then we
look among those targets for the energy δt of the randomized step vs. the
deterministic step:
a) If δt = 0, then we randomize over the artificial order within the graph

representation;

draft version hg:f62d8dbf55e5+:196+
6

compiled September 15, 2010

b) If δt > 0, then we randomize with respect to the actual cost function.
(2) If there are no targets with an improvement to the cost function, then

we look among those targets with the analogous subcases (a) and (b) as
described in (i).

For each randomized elimination sequence ρ we can then observe how many steps
fall into one of the above four categories and also consider the quantity

δρ ≡

∑

δt∈ρ

δt

|ρ|

as a (rough) measure of the distance of the given randomized heuristic from the
deterministic heuristic as far as the actual cost function is concerned, where |ρ|
denotes the length of ρ. If we can find ρ with a substantial improvement of the
cost function but all steps fall into categories 1(a) and 2(a), then the conclusion to
be drawn is that the artificial order in the graph determines most of the cost, the
suggested randomization over the energy would not be worth the effort, and one
should break ties randomly. On the other hand, if there are no such sequences or
even if there are only a few steps with a nonzero δt, then the suggested heuristic
is justified.

(a)

 0

 0.05

 0.1

 0.15

 0.2

 130 150 170 190

(b)

 400

 450

 500

 550

 600

 650

 700

 130 150 170 190

(c)

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 130 150 170 190

(d)

 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800
 3000
 3200

 130 150 170 190

Figure 4. Plotted over the cost function values are δρ in (a), |ρ| in (b), vertex counts in compressed
accumulation circuits in (c), edge counts in compressed accumulation circuits in (d).

The δρ values shown in Figure 4(a) indicate that the cases 1(b) and 2(b) play a
substantial role and therefore the suggested heuristic is effective. To gain insight
into any structural properties, one will eventually have to look at the elimination
sequences and compare them. This comparison is nontrivial because, as shown in
Figure 4(b), the length of the sequences varies greatly. One might suspect that
more elimination steps would be required to drive the cost down and therefore the
best sequences would likely be longer than the others. We point out that contrary
to this plausible assumption, among the sequences with the lowest cost is also one
that is the shortest; see the lower left datapoint in Figure 4(b). This gives another
indication that a structural property lies at the heart of the improvement.
Comparing of elimination sequences in order to detect structural properties is

difficult for at least two reasons. First, the random sequences are of different length;

draft version hg:f62d8dbf55e5+:196+
7

compiled September 15, 2010

and, second, the sequences still embody a substantial artificial order that stems
from tie breaking and is not at all relevant to the question of structural properties.

−−−→
(3, 4)

[
c53 = c43 ∗ c54
c63 = c43 ∗ c64

←−−−
(3, 5)

[
c51+= c31 ∗ c53
c52 = c32 ∗ c53

←−−−
(3, 6)

[
c61 = c31 ∗ c63
c62 = c32 ∗ c63

︸ ︷︷ ︸

Preaccumulation

1

2

5

6

c51
c61
c52

c62

G′(ρ)

v̇5 = c51∗v̇1 + c52∗v̇2

v̇6 = c61∗v̇1 + c62∗v̇2
︸ ︷︷ ︸

Propagation

1 c51 c43 c54 c64

× ×

×

+ × × ×

Φ(ρ)

c51 c43 c54 c64

×

c52
×

c61 = c62+
c51

Ψ(ρ)

Figure 5. A full edge elimination sequence ρ =
(−−−→
(3, 4),

←−−−
(3, 5),

←−−−
(3, 6)

)

is shown along with the corresponding

remainder graph G′(ρ), accumulation circuit Φ(ρ), and compressed accumulation circuit Ψ(ρ). Note the
redundancy in the fully preaccumulated Jacobian. Any full edge elimination sequence will result in the
same remainder graph G′, though different sequences generally imply different computational costs for the
preaccumulation phase. However, sequences that are functionally identical may look quite different: For

ρ̃ =
(←−−−
(4, 5),

−−−→
(3, 4),

−−−→
(1, 2),

−−−→
(2, 3)

)

, we have G′(ρ) = G′(ρ̃),Φ(ρ) = Φ(ρ̃), and Ψ(ρ) = Ψ(ρ̃).

3.2. Comparing accumulation circuits

For a given edge elimination sequence ρ, the essential structure of the computation
performed by the corresponding accumulation code is exhibited in the correspond-
ing accumulation circuit Φ(ρ). Φ(ρ) is an arithmetic circuit whose leaves - the
inputs to the circuit - correspond to the variables labeling the edges E(G). The
internal nodes of Φ(ρ) all have exactly two predecessors and are labeled either +
(sum gates) or × (product gates), where the label for a gate α ∈ Φ is denoted oα.
In general, an accumulation circuit will have many outputs, each of which com-
putes a value carried by an edge in the remainder graph G′. (Note that, for edge
elimination, this is also true of some nodes in the accumulation circuit that are not
maximal.) In general, the number of edge elimination sequences (partial or full)
is much bigger than the number of accumulation circuits that can result from an
edge elimination sequence. This gives us an equivalence relation where two edge
elimination sequences ρ1 and ρ2 may satisfy Φ(ρ1) = Φ(ρ2) in addition to satisfying
G′(ρ1) = G′(ρ2). Note that having G′(ρ1) equal to G′(ρ2) is necessary but not suffi-
cient for two edge elimination sequences to be considered equivalent. Compression
of the accumulation circuit, which establishes a kind of canonical form, allows for
an even coarser equivalence relation. An example is shown in Figure 5.
The hope is that one may find a pair of sequences that has a substantial differ-

ence in the cost function yet the accumulation circuits are similar. The remaining
difference then might point to a particular structure that triggers the difference in
the cost. The following properties of the accumulation circuit guide the compres-
sion. All nonconstant minimal vertices are distinct; all constant minimal vertices
either have identical values or are considered distinct; there can be nonmaximal
vertices referenced by the remainder graph; and all non-minimal vertices are either

draft version hg:f62d8dbf55e5+:196+
8

compiled September 15, 2010

multiplication or addition operations. The circuit compression consists of the fol-
lowing steps: (1) collapse all vertices that are minimal, constant, and have identical
values to a single representer vertex; (2) replace any constant valued subgraphs S
that evaluate to exactly 1.0 and have a single outedge (S, j) by a new edge (1.0, j)
from the constant 1.0 representer vertex; (3) contract any edge (i, j) such that i
is nonminimal, j is the only successor of i, oi = oj, and i is not referenced by
the remainder graph; (4) collapse to i all nonminimal vertices j, if i and j have
identical predecessor multisets1 and oi = oj.
The numbers in Figure 4(d) show that compression yields reductions between

611 and 1130. On the compressed accumulation circuits we can recursively build a
signature sv = (ov , cv,Vv, Cv) for each vertex v by considering its optional operation
ov or constant value cv, a multiset Vv of its dependencies on variable minimal ver-
tices, and a multiset Cv of elements (c, o, C∗) representing operations with constant
values.

Algorithm 3: Construct signatures for accumulation circuit vertices

input: initial Accumulation circuit Φ
forall minimal v with constant value c do1

set s(v) = (., c, ∅, ∅)2

forall variable minimal v with edge label cji do3

set s(v) = (., ., {cji}, ∅)4

forall non-minimal v with direct predecessors P do5

V ′ =
⋃

p∈P

Vp; C′ =
⋃

p∈P

Cp
6

if V ′ = C′ = ∅ then7

compute new constant cv value from all predecessors8

set s(v) = (., cv , ∅, ∅)9

if ∃p ∈ P such that Vp = Cp = ∅ then10

compute new constant cv value from the constants of those p11

set s(v) = (ov, .,V
′, {(ov , cv, C

′)})12

else13

set s(v) = (ov, .,V
′, C′)14

The signatures can be built bottom up in the accumulation circuit and, with the
multisets lexicographically ordered and suitably represented as a string, can be used
to compare two vertices by string comparison. This feature has been implemented
to enable comparisons between sequences from the cluster of good solutions and
the cluster of solutions closer to the Hg result. Unfortunately, even in circuits of
similar size we could match only less than half of the vertices. The alternative search
for some vertices occurring only in circuits from the preferred cluster of solutions
indicating a crucial step in the elimination has so far not produced tangible results
and is subject to further research.

4. Conclusions and Future Work

The design of AD tools that can effectively exploit Jacobian scarcity in a practical
setting remains a challenging problem. Through the use of a randomized strat-

1The accumulation circuit can have parallel paths; we must determine how often a given vertex is a
predecessor.

draft version hg:f62d8dbf55e5+:196+
9

compiled September 15, 2010

egy implemented in OpenAD, we were able to significantly reduce the attainable
nontrivial edge count in a number of real-world examples. The heuristics and cor-
responding computational results presented here indicate that a greedy approach
is not sufficient to produce optimal partial edge elimination sequences.

4.1. Rerouting and normalization

We excluded both reroutings and normalizations from the graph modifications in
this paper. In [7] it was shown that normalizations can be done in a postprocess-
ing step which implies that the randomized heuristic is not affected. With respect
to reroutings operations the situation is more complicated. The experiments with
greedy heuristics in [7] show that some improvement in the final cost function
was obtained when rerouting operations were allowed. However, these heuristics
yielded an acceptable operations count for the ensuing elimination sequence only
when rerouting operations were restricted to combinations of reroutings and edge
eliminations, and the respective combined operations also reduced the nontrivial
edge count. One can view a rerouting as an inverse edge elimination and that
poses a problem for discriminating between simple backtracking in the elimination
metagraph and a rerouting step. In fact, for the randomized heuristics proposed
here the metagraph is a tree. Because in our experiments the randomized heuris-
tics have always undercut the rerouting-enabled greedy heuristics, we did not see
enough justification to introduce the added complexity of rerouting operations to
the metagraph.

4.2. Face elimination

Thus far, our approach has been to treat edge elimination operations as elemental.
Future work on the minimum edge count problem might focus on an alternative
elimination framework known as face elimination, which involves transformations
in the line graph of G [10]. (Note that, in the line graph, the labels representing
partial derivatives are associated with the vertices rather than the edges; hence, the
corresponding problem would involve minimizing the number of nontrivial vertex
labels in the line graph.) Face elimination represents a more fine-grained approach
and is strictly more general than edge elimination in that any accumulation circuit
produced by an edge elimination sequence can also result from some face elimina-
tion sequence (the converse does not always hold).
Exploiting scarcity in this framework would require a redefinition of propagation

through the remainder line graph that results from a partial face elimination se-
quence. Such a redefinition might involve some method for reversing the line graph
operation, which, in general, is possible only by adding dummy edges (in our con-
text these edges would receive the unit label 1); minimizing the number of dummy
edges is a nontrivial problem in its own right [6]. While this approach shows some
promise, the efficacy of face elimination for minimizing edge counts has not yet
been demonstrated.

4.3. Outlook

The results we have obtained indicate that the potential for exploiting Jacobian
scarcity may be far greater than what the current heuristics - those described in this
paper included - can achieve. A more thorough investigation of these possibilities
requires a theoretical foundation for the minimum edge count problem. Such a
foundation ought to be independent of any particular elimination framework.

draft version hg:f62d8dbf55e5+:196+
10

compiled September 15, 2010

Nevertheless, edge elimination has proven to be a sound algorithmic framework
for this problem. It would be of some interest to determine whether there is a
polynomial-time algorithm that, given a linearized computational graph G, pro-
duces a remainder graph with a number of nontrivial edges that coincides with the
minimum over all possible edge elimination sequences. While the search space for
this problem is truly enormous, the discussion of compressed accumulation circuits
in Section 3.2 represents a first step toward identifying of those properties that
truly distinguish one elimination sequence from another. Future work in this area
should include further investigation of the structure of accumulation circuits.

Acknowledgments

This work was supported in part by the U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

References

[1] Andreas Griewank. A mathematical view of automatic differentiation. In Acta Numerica, volume 12,
pages 321–398. Cambridge University Press, 2003. .

[2] Andreas Griewank and Olaf Vogel. Analysis and exploitation of Jacobian scarcity. In Hans Georg
Bock, Ekaterina Kostina, Hoang Xuan Phu, and Rolf Rannacher, editors, Modeling, Simulation and
Optimization of Complex Processes, pages 149–164, Berlin, 2005. Springer. ISBN 978-3-540-27170-3.
.

[3] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia,
PA, 2nd edition, 2008. ISBN 978–0–898716–59–7.

[4] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: an approach to ap-
proximate counting and integration, pages 482–520. PWS Publishing Co., Boston, MA, 1997. ISBN
0-534-94968-1.

[5] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[6] M. S. Krishnamoorthy and N. Deo. Complexity of the minimum-dummy-activities problem in a pert
network. Networks, 9:189–194, 1979. .

[7] Andrew Lyons and Jean Utke. On the practical exploitation of scarsity. In Christian H. Bischof,
H. Martin Bücker, Paul D. Hovland, Uwe Naumann, and J. Utke, editors, Advances in Automatic
Differentiation, volume 64 of Lecture Notes in Computational Science and Engineering, pages 103–
114. Springer, Berlin, 2008. ISBN 978-3-540-68935-5. .

[8] Nicholas Metropolis, AriannaW. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953. .

[9] U. Naumann and Y. Hu. Optimal vertex elimination in single-expression-use graphs. ACM Transac-
tions on Mathematical Software, 35(1):1–20, 2008. ISSN 0098-3500. .

[10] Uwe Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph. Mathematical Programming, Ser. A, 99(3):399–421, 2004. .

[11] Uwe Naumann and Peter Gottschling. Prospects for simulated annealing in automatic differentiation.
In Kathleen Steinhöfel, editor, Stochastic Algorithms: Foundations and Applications, number 2264 in
LNCS, pages 355–359, Berlin, 2001. Springer. ISBN 3-540-43025-3. .

[12] Uwe Naumann and Peter Gottschling. Simulated annealing for optimal pivot selection in Jacobian
accumulation. In Andreas Albrecht and Kathleen Steinhöfel, editors, Stochastic Algorithms: Founda-
tions and Applications, number 2827 in Lecture Notes in Computer Science, pages 83–97. Springer,
2003. .

[13] Johannes J. Schneider and Scott Kirkpatrick. Stochastic Optimization (Scientific Computation).
Springer-Verlag New York, Inc., 2006. ISBN 3540345590.

[14] Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout, Patrick Heimbach, Chris
Hill, and Carl Wunsch. OpenAD/F: A modular, open-source tool for automatic differentiation of
Fortran codes. ACM Transactions on Mathematical Software, 34(4):18:1–18:36, 2008. .

[15] D. F. Wong, H. W. Leong, and C. L. Liu. Simulated annealing for VLSI design. Kluwer Academic
Publishers, Norwell, MA, USA, 1988. ISBN 0-89838-256-4.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government.

draft version hg:f62d8dbf55e5+:196+
11

compiled September 15, 2010

